

Iw=

CONTENTS

Abstract ii
Problem Status ii
Authorization il

INTRODUCTION1

TESTING COMBINATIONAL LOGIC 1

Gf.neration of Test Dictionary 2
Application of Teat Dictionary 5
Bounds on the Number of Tests:

Seril V Fixd Tst Shedles6

TESTING SEQUENTIAL MACHINES 6

Philosophy of Diagnosing Sequential Machines 7
State Table Methods 7
Search Method 8

SUMMARY 12

FUTURE WORK 12

REFERENCES 13

--- --------

ABSTRACT

Finding efficient testing procedures for digital machiaes has be-
come of prime concern to the industry due to high circuit d&nsities
brought about by evolution in semiconductor device technology.

The number of inputs required for testing can be reduced from the
set of all possible input combinations to a smaller group derived from
a dictionary of tests which defines unique relationships between failure
mode and output response. Reduction of the test dictionary by prime-
impliuant minimization methods and by serial application of the reduced
set can lead to manageable test programs. These involve sequence
lengths characterized by a lower limit, bounded by the logarithm of the
number of initial table entries.

Testing sequential machines is especially cumbersome due to the
dependency of circuit response on previous input sequences. Lines of
attack include checking for consistency between circuit response and
design state table. A more manageable scheme involves grouping ma-
chines of specific failures according to their responses to selected test
inputs. A proper choice of inputs for each test step and the adaptive
application of the resulting sequences provides relatively efficient
fault-location programs.

Practical schemes for complete testing have yet to be found. Adap-
tive sequence generators with programmed options for state-table and
combinational analysis appear ,to yield more promising results.

PROBIXEM STATUS

This is an interim report on a continuing problem.

AUTHORIZATION

NRL Problem BO1-04
Project RR03-02-41-6150

Manuscript submitted May 26, 1969.

Ii

& ___

f

DIGITAL DIAGNOSTIC TECHNIQUES
SURVEY AND RECOMMENDATIONS

INTRODUCTION

The development of integrated circuitry and the mass production of large-scale dig-
ital hardware have posed new problems for the industry. Among them is how to check
tha operation of digital machines without expending excessive man hours of labor. One
obvious approach is automation, and it is now being extensively used by most large sup-
pliers of electronic aevices. Yet, there are still problems which relate to the specific
algorithms used to generate the set of tests to apply to the device in question. The par-
ticular choice of test-generating algorithms is critical in that the number of input combi-
nations to be searchei, for all but the smallest machines, can become extremely large
for complete testing if, indeed, complete testing is possible. This point is especially
relevant when only a ie,v machines of a design are being produced.

It should be noted that, with the advent of integrated circuitry, modular construction, I
and microscopic dimensions, the traditional probing of internal circuitry is generally not
feasible, and tests have to depend on the Input-output relationships of the machine as a
black box. Test points can be brought out from strategic circuit areas, but this practice
thwarts the ideal of designs with low pin-to-gate ratios.

Digital systems contain both combinatorial and sequential logic which have to be
tested. The problem of generating tests for combinatorial logic has been approached,
with feasible results being obtained by Kautz (1) and by Hornbuckle and Spann (2). How-
ever, a complete solution for the genei-al class of sequential machines has not been ar-
rived at, although powerful techniques for reasonably thorough checkout have been devised.

TESTING COMBINATIONAL LOGIC

In combinational logic, the response to each test input is independent of the previous
input sequence. Therefore, an exhausI ve logic test sequence for a circuit having n in-
puts consists of 2" tests. A method of reducing the reqtlired number of tests is to list a
set of faults to be considered and then to design tests to detect the occurrence of these)

faults. Certain assumptions are generally made about these faults. First, they are con-
sidered not to be intermittent; i.e., once a fault has occurred it remains long enough to
be detected and corrected. Second, while there are methods for detecting multiple fail-
ures, only single faults are considered, multiple faults having small occurrence probabil-
ities; also, it is intuitively logical that most tests derived for detecting single faults will
also indicate abnormalities when additional failures are present in the syi'tem. Third,
the types of fault generally considered are those which cause any input or output line

within the system to be stuck in a 1 or 0 condiion. Less often, open connections or
shorts between different lines are taken into consideration.

The following is a discussion of the aspects of specific techniques applicable to com-
binatorial machines. It is assumed that a model on which the machine in question and all
designated faults can be simulated is available. Most likely, this would be a general-
purpose computer programmed as a logic simulator.

'2 W. R. SMITH

Generation of Test Dictionary

The first step in the test-generation procedure is the formation of a fault-test dic-
tionary. This dictionary is a table which lists, for each input combination, the associated
failure conditions causing abnormal output combinations. From here on, the digital unit
operating error-free will be referred to as the good machine in0 , and the unit under a
specific failure condition i as the bad machine m, The central problem then, is to find
the complete set of inputs and associated bad machines mi for which the output of the
goad machine m, and the m, differ.

_ .Two approaches nave been used in constructing a fault-test dictionary:

1. Entries in the fault dictionary can be generated by starting with the input list and
finding the set of faults corresponding to abnormal outputs for each input combination;

to2. Conversely,given any fault, one can find that set of inputs which causes the output
to be different for the good machine and the specified faulty machine.

The first method of finding fault-test entries is conceptually straightforward.

Let ua assume that the logic system is fully described in a functional block simula-
tion. Then starting with input , , x .. X, through all combinations to xj, x,,

.X...... x, each failure mode of interest can be simulated and the output noted in each
case.

After all input combinations have been applied for each simulated failure mode, a
table can be set up as below.

XK .. x fo f 1 f 2 f f

0 0 0 0 1 0 0 0
0 0 1 0 1 1

0 0 0 0 0 1 I

1 1 1 0 0

The f Is are the output of the machine for each simulated failure i a-id input x1 ,
x1, x3 1 x,. Note that no assumption is made about the nature ot the faults, whether
they are single, multiple, short circuits or open circuits.

it is clear that generating the fault dictionary by input simulation requires 2 Fcr-I

plete simulations of the machine, where N is the number of input lines and F the number
of failure modes.

The second technique is the failure sensitivity method, whereby the number of oper-

ations involved in setting up the test dictionary can be reduced. The approach is to as-
sume a failure and then, using the machine description, generate that set of inputs which
sensitizes the machine output to each failure listed.

In this way it should be feasible to generate the test dictionary with only F sensitiv-
ity calculations. Whether the advantages of the smaller number F of sensitivity calcula-
tions is offset by the greater complexity of each calculation, as compared with direct
simulation, is another problem.

M

NRL REPORT 6938 "

Two sensitivity methods have been presented in the open literature.

1. The first method uses an operation which has been called the "Boolean difference"
by Sellers, Haiso, and bearnson (3). Let the good machine be denoted by its function F(x)
and the machine under failure by FO(x). Find the input states under which F(x) s FI(X).
This is the condition under which

F(x) @ (x) -- I

or

F(X (•) + F(x) Fa(x) I

For a single "stuck at 1 or 0" type of failure in terminal i, then

Do F(xj) F(x, xi,2 xi x) D F(xx 2 X)

where Ds is the difference operator. Sellers and others (3) and Anar and Condulmari
(4) ave derived relationships which facilitate the application of the difference operator
to the various Boolean forms. The enticing aspect of this method is that it uniquely de-
fines those inputs and the states they must be in to sensitize the output to the state of i
terminal i.

It only remains to enter these input combinations including "don't cares" into their
proper rows of the fault-test dictionary. j

The disadvantages of this method are that it does not map the specific state of ter-
minal i to the specific state of the machine output, and that memory requirements can
become excessive when computing the Boolean difference for a function of many variables.

2. Another sensitivity method, called the D-Algorithm, after Roth (5,6) uses the in-
ternal line structure of a circuit to describe the function and its failures. In this method,
each logical unit in the circuit is represented by a type of cubical complex known as a
D-cube. It provides a representation of the sensitivity state between v.rious terminals
of a logic block and is derived from the singular cover as follows.

An AND gate with its singular cover and D-cube is shown in Fig. 1. The singular
cover of a logic unit is a table that lists its terminal states for different outputs and
completely describes its operation. The associated D-cubes can then be derived by
matching all of the singular cover rows by pairs. Whenever a condition is found where
the output and some input terminal differ in state, a new cover row is written with D's
inserted for those terminals changing state. One can see, then, that D-cubes relate en-
sitivity states of pairs of logic unit terminals. Given a circuit made up of a number of
interconnected logic units, the D-cubes for each unit are then linked so that terminal as-
signments are consistent within columns. This forms an array in which each column
represents different terminals in th. circuit and each row a different fl-cube.

Now, finding a path through the circuit relating the output state to the state of some
internal termina involves finding a path through the 0-cube array such that every f-cube
element chosen is consistent in terminal state assignment with every other element. If
a consistent sensitivity path is possible for some input condition, the algorithm will find
it.

As a simple illustration of this method, the following procedure finds an input corn-
bination sensitizing the output, line 6 of Fig. 2, to the state of line 4, the AND gate ilock.
The singular covers and associated D-cube table are shown with the circuit. Since we
wish to have the circuit respond to state changes in Aine 4, first locate a f-cube in the

i II 2.- --- --. ZA

I

W. R. SMITH

i] ITerminals

2I
2 4

D-cube D1 I I

Fig. 1- Two-Input AND gate with
associated singular cover and D-cube

I Terminalsi

AN2 1 2 3 4 5S
12 45

i 1

,, I
OR 66 :

D D

SI2o

66

: D 1

NRL REPORT 6938 5

table with a D in column 4 (representing line 4). Picking D I D4 specifies that a 1 on I
line 2 constrains the state of line 4 to follow that of line 1. SlnceliP) 2 is fixed at tAh
value 1, consistency demands that any next D-cube we choose from the table have a l or
D in column 2. Before we do that however, let us continue finding a D-cube relating son-
sitivity in line 4 to st:ates further along in the circuit. Picking D4ODG satisfies thiso
specifying that the output, line 6, is sensitized directly to the state of line 4 when a 0 is
on line 5. Combining the two D-cubes chosen thus far, we have D'13D40D 6 . bpUt line 3
han yet to be examined. Seeing that line 2 is in state 1 we could not, for intaoe, pick
D213D$, since 2 and 5 would be required to be in identical states, and this would be Incon-
sistent with the assignments already made. Picking 1 2D3D' satisfies consistency and
specifies a 0 on line 3, matching line 5. Combining the three 0-cubes, we get D1110V601M
We now have an input specified which sensitizes the output to the state of line 4 and have
an input line, line 1, which can be used to exercise the logic for the test.

Application of Tent Dictionary

Having derived a test dictionary as described above for a given machine, how can it
be used to isolate a given fault or determine if the machine is good? Since we are con-
carned with distinguishing between columns F, representing different machines, (s.

m . w -), we generate a new fault matrix o by the following method. For fault
detection, where we are not concerned with distinguishing between various types of fail-
ures, we define a reference column, namely Fo, for the good machine. Then, in every
fault column F, corresponding to machine P7, where the machine output differs from that
of m, we place a 1 in the appropriate row and column of matrix 0. If the two outputs
are identical, there is no distinguishability and we enter a 0. It i, clear that the 0 matrix
will have one less column than the F matrix.

It is appropriate at this point to bring in the notion of fault diqgposis as opposed to
simple fault detection, if the reader has not already considered it. In fault detection, we
are concerned only about whether the machine under test is working or not. In diagnosis,
if the machine has failed, we wish to ascertain which of the faults listed is present.
Fault diagnosis is also referred to as fault location.

When the G matrix is extended to fault diagnosis, then the reference columns become
those faults which we wish to locate either singly, or in groups as in the case of class
failures. Then, every reference column is compared with every other column not in its
failure class, and new distinguishability columns of ones and zeros are generated. There
will be one column generated for every pair of columns of f that belong to different fail-
ure classes.

The resultant failure distinguishability table G, then, is analogous to the description
of a multiterminal network, and we wish to minimize it such that all of the failure classes
of r are distinguishable using the least number of input combinations. The methods of
reduction used correspond to those used for finding a prime-implicant cover of a given
switching function from its prime-implicant table.

When the inputs in the reduced fault-test table are applied to the unit under test, the
particular machine we have will be found from the column which satisfies the set of test
outputs.

Bounds on the Number of Tests

It is of interest to place upper and lower bounds on the number of tests required to

identify the machine being tested. That is, how many columns there are in the reduced
test matrix will determine the number of tests.

6 ~W. Rt. SMITH

Obviously, th. upper bound on the number of test required would be equal to the

number of failures in the original fault-test dictionary in that case where no minimiza-
tion of the 0 matrix is possible. A lower bound on the required tests would be generated
by the ease where the fault-test matrix a contains a subset of rows which constitute a
binary coding of all the columns. Reduction, in this case, would result in N tests,

I C I + logs M

where m is the number of different fault classes.

Preparala (7) has shown the average of the minimal test schedule to be close to
2 logs0, which is not far from the minimum. Note that, when doing fault detection, the-i- number of fault classes is one.

Serial Vs Fixed Test Schedules

Once the minimum test matrix has been derived, there remains a further considera-
tion with regard to the test procedure. In what order, If any, should the individual tests
be applied to the machine ? I all the inputs in the test group are to be applied in every
case, there is no need to worry about their order, since the entire sequence will be run
anyway,

But, consider the desirability of examining the results of each step in a test sequence
and letting the results of that step determine the next. It is possible to gain sufficient in-
formation to indicate some failure mode without the application of the entire test set.
At any point in the test sequence, we need a way of measuring the information to be
gained from applying any remaining available test input. From an information theory
viapint, that test which most evenly partitions the test results is the optimum, pro-~vided all failure classes have the same probability of occurrence. For example, if each

test result branches the failure possibilities into two groups (assuming a single binary
output), we will want to choose the next test from a particular branch on the basis thatsuch a test will most evenly divide the remaining possible failure classes into two groups.

In a way simlar to the case of the faiult-test matrix, it is possible to reduce the number
of levels in the test tree to L,

L =1 + 10 m

where a is the number of failure classes.

The minimum stated above could be achieved where each test in the sequence divides
the remaining failure classes into two equal parts.

TESTING SEQUENTIAL MACHINES

In sequential machines, tests are not independent. To place a network in a state in
which a certain failure can be detected, a sequence of inputs must be applied. In other
words, an incorrect state generated within the logic by a fault may require many test in-
puts before Its effect is observable at the output. It is apparent then, that test sequences
for sequential machines can become very long.

At this point, it might be well to review some of the assumptions underlying the auto-
matic testing problem.

eI
I _ _ _ _ _ _ _

NRL]REPORT 6938

1. It is, of course, assumed in application that inputs and outputs of thise machines
are electrical and binary in nature. This does not, however, restrict the usefulness of
the theory.

2. Further, to generalize the approach to the fullest extent, it is necessary to not
restrict oneself to synchronous logic or to specialized configurations designed to suc-
cumb easily to certain test methods. It is expected, however, that the unit under test has
been designed as a strongly connected machine even if it might not be so under failure.

3. It is expected that a complete description of the functioning design is available in
the form of a logic diagram, state table, or other self-contained format amenable to ap-
plication in computer simulation software.

4. Finally, as mentioned before, all expected modes of failure have been prespeci-
fled along with their effects on the system.

Philosophy of Diagnosing Sequential Machines

Diagnosis of a faulty system in broad terms entails discovering the set (sequence) of
machine outputs which differ from those of the good circuit under a specified input set.
Once these are found, one can relate them to one of the specified modes of failure.

The diagnostic task, as mentioned before, for a combinational digital machine Is
straightforward, iassuming that, under failure, the combinational network does not be-
have sequentially. The set of input combinations required for complete testing never
exceeds the number of failure modes and, In general, will be less.

Testing a sequential machine, however, requires the application of a set of input
sequences. The lernth of these depends on the number of internal states of the machine,
along with the number of its input and output terminals.

Testing methods have evolved along two paths. The first, or distinguishability phi-
losophy, attempts to derive test sequences which distinguish between selected machines.
By suitably intersecting these tests, it is possible to derive a set of Input sequences
which will Isolate failures. Tne second, or black box, philosophy used by Moore (8) does
not examine specific cases but interrogates the collection of machines, observing inputs 4

and the corresponding outputs. Tests are then chosen on the basis of how well they par-
tition the set of machines into equivalent failure classes.

State Table Methods

One way of checking a sequential machine is to verify that it operates in accordance
with its design state table. Hennie (9) makes use of this method in a testing scheme
which checks each state and the transitions from each state to every other state in the
table. To accomplish this, the circuitry is first located in som known starting state.
Then, an input chosen to take the circuit into some new state is applied and the result
checked against the design state table. If all outputs occur correctly, then the circuit isgood.

To place the circuit in a known starting state requires a synchronizing sequence
which leaves the circuit in a known state. Since nsot all circuits have synchronizing se-
quences, one can use a "homing" sequence which, when applied, provides an output which
uniquely defines the final state from which point a transition sequence will bring the cir..
cuit into the desired starting state. An input chosen to transfer the circuit to a new state

8 W. R. SMITH

is applied and the result checked by a distinguishing sequence. The distinguishing se-
=noe provides a unique outpt sequence for each different starting state; thus, it iden-
til s the initial state of the circuit to which it is applied. In applying the various se-
quences, one does not worry about whether the circuit is responding according to the
state table, since an incorrect transition at any stage will appear under the application of
the next distinguishing seq.ence, and the malfunction will be detected.

For a network having many states, this procedure will require large amounts of
time and computer memory. The minimum number of distinguishing sequences that has
to be applied I -(n), where a is the number of inputs and n the number of states. In

-act,R ennie states that the total number of test steps required can reach

n(n)(2L+2n- 1) +n(n- 1) + (n+ I)L

where L is the length of Lh distinguishing sequence. Also, this method is not diagnostic
-in that it provides only the verification of correct operation.

A further disadvantage of this approach is that not all circuits have distinguishing
sequences. In this case, a particular state might be identified by observing its response
to two or more different inputs called characterizing sequences. The circuit must there-
fore be brought into a state as many times as characterizing sequences are needed to
identify it. The reiulting tests become many times longer.

Poasge and McCluskey (10) expanded on this method by considering the state tables of
the set o specified bad machines as well as of the good one. By combining all the state
tables, an Indicatior of the initial states lor which distinguishing sequences cause differ-
ent outputs for dilferent madines is given. This procedure guarantees the shortest pos-
sible test sequences having diagnostic properties. Here again, the computer time and
memory needed to handle the state tables is prohibitive.

Search Method

The basic search method was first utilized by Seshu and Freeman (11) and improved
upon later by Seshu (12). Broadly speaking, it entails sequentially questioning a collec-
tion of machines and grouping them according to their responses until no further parti-
tioning is possible under repeated questions. Each machine is treated as a black box and
evaluated strictly on the basis of its input-output relationships.

The correctly operating network and the networks operating under the specified fail-
ures are all simulated. The entire set of machines is then placed in some starting state
a.. One of the criteria of this method is that there exist Input combinations which
uniquely set the states of any of the machines m k. All input combinations are then ap-
plied to all the machines and the outputs recorded. One of these input combinations will
be chosen to represent this step of the test sequence based on the output patterns of the
group. The next step is a repetition of the first except that only those inputs which do
not differ in more than one variable from the previously selected test i, ut are allowed.
This constraint follows from the philosophy of testing asynchronous networks In general.I

The criteria by which the next inputs in the test sequence are chosen is closely re-
lated to the efficiency of the entire testing scheme. In Seshu's original method, a local
sea-ch ts used. That is, the suitability of a test for step n of the sequence is based upon
the results of step n - ! only. Global methods, which back k steps to the n - k test,
become prohibitively unwieldy with increasing k, although they could be applied for
small k's. Chang (13) presents a well-organized treatment of cistinguishability criteria
by which test steps are chosen.

NRL REPORT 6938 -

To appreciate the motivation behind the distinguishability criteria, let us review a
few points.

In testing for failures we might want to ascertain one of three things. First: Is the
unit under test operating correctly or not (is it machine mo or ass)? Second: If the unit
has failed, which =n are we dealing with? Third: If the unit has failed, in which sub-
group of failure classes does the unit fall ? The last question properly arises when we
are dealing with a network composed of smaller subassemblies such as logic cards or
integrated circuits, and diagnosing a fault only means finding in which subassembly it Is
located so that it can be replaced. So, we can always divide the set of machnes fj into
equivalence classes of failure. In case we wish to distinguish each and every failure,
every machine falls into a separate clas. Only in the case of fault detection do all the
failed machines fall into only one class. In between, we assign machines to classes ac-
cording to subassembly relationships.

Now, when questioning the set of machines, we would like responses to be alike for
all machines in the same failure class. Nf this were possible, we would have a test which
uniquely defines the failure mode in one stepl However, our network, in general, does
not have enough output combinations to partition every failure class and even so, it is
highly unlikely that a single input test combination would provide such a fortunate result.

Seshu's work utilizes an infomation gain criteria, which measures the ability of a
test to partition each fault into a separate channel. For a test which generates m parti-
tions, its information gain can be computed as follows: Referring to Fig. 3, let (i + 1. j,),
(i + 1. j,), ... , (i + .,) bp the m equivalence classes which result by applying test T,
to (1)-the equivalence class at the ith test level and the ith partition. Then the in-formation gain for test T"k is

Ok . nk(i + I .) n,(i+ . j,)

S-1 "k(i' j) log2 NO(' j)(1
.*(11

where all faults in (,) are assumed equiprobable.

The information gain of Eq. (1) Is suitable for binary partitioning. It can be extended
to the r-partitioned case by taking the summation of the gains of m - I binary partitions.
If a priori probabilities are assigned to failures, suitable weightings can be applied to
the terms of the summation.

When atest level Tk on equivalence class (i,.j) gives no further partitioning, there

is an information gain of zero, a new reset condition is tried, and the process continues.
If, after all resets have been tried, no further partitioning is possible, then the machines
in that branch of the test tree are indistinguishable by this method, and the process pro-
ceeds with other classes until all possible partitioning is completed. The result is a test
tree which can be applied to the network in question, branching as indicateil by the output
Z. until a path end is reached indicating what failure or group of failures applies.

In his paper, Chang (13) gives a better method of measuring information gain where
tallures in a submodule are grouped into the same equivalence class. The essential idea
is that one would like to apply a test which would distinguish every machine aj from
every other machine mk not in its equivalence class. if every machine is in its own
class, there are N(N+ 1)/2 pairs to be distinguished. A test is most useful, then, if it
distinguishes the greatest number of pairs of machines. Thus, we count the pairs formed
by each machine in (i + 1. jk) and those in (+ 1, it) as given in Eq. (2):

10 W. R. SMITH

z,

Snk(i "2j)-Z'
01j

Notation

(i~j) =Equivalence clans at ith level and jth partition

n(i,j) 2.Number of machines in (ii)

nk(i+ 1,jo)= Number of machines in (i+ 1, i) resulting from applyingTk to (i, j)

T = Test at level k of sequence

Z. Output resulting from test Tk

Fig. 3 - PartUoning by test step TA

k * fk(i+ 1, j 1) (in(i+ 1, j 2) + nk(i+ I. J3) + + nk(i+ I, /a))

+ nk(i+ 1, j 2) (nk(i+ 1j' 3) + + NA(i I, j.)]
"+ + ' nk(i + I- is'l) [nk(i + 1, j.)]

[. (i +Iis) k(i+l. it)] (2)

Now, when we extend this to fault location within modules, we redefine y by removing
from the count those fault pairs that are distinguished by Tk but are associated with the
same module.

Let n (i + 1. j.)p denote the number of faults in (i + 1, j.) associated with module P.: Thus, by the same reasoning we used to obtain Eq. (2), we get

[nk(il + -J.)P nk(i + 1, it)

fault pairs that need not be distinguished. Subtracting this from VA leads us to our
measure Ak:

ii _ n__ e
__

1C

NRL REPORT 6938 -=

Ak= [n(i + 1, j)p N + Jt) nk(i 1, Jt)p]} (3)

For an example of a test tree generated by this procedure, see Fig. 4.

(i+ 1, it) (i+ 2, it)

(if5 fl, f? , fS e,)

I""fI f.3fI

(0+, j3) (i + 2 j,)

1':

Notation

fnP = Fault n located in module P (i+ 2. J2)

Tk = Test k

Zkj = Output for equivalence class i resulting from test k.

Fig. 4 - Partitioning of faults to within modules

Chang's procedure has the advantage of generating shorter test sequences when test-

ing to within modules is applicable, and it eliminates the log 2 calculations, thus effecting
savings in computer time.

Jones and Mays (14) have experimented with a fault-detection system based on
Seshu's local search method but incorporating changes that improve the ability of the
program to find test sequences for all listed faults. Instead of abandoning a test path
when output patterns no longer partition the equivalence class, the state of the internal
feedback lines are examined, along with the outputs. Information gain is then figured on
the response of the memory states as well as on the output. H improvement is obtained
by this procedure, the test sequence is continued until either partitioning based on output
states or a :et limit on the number of steps is reached.

The local search method, while it discovers faults rapidly in its early stages, tends
to wander and be less productive when few faults remain unpartitloned. Jones and Mays
therefore cause the program to brenk into a new random search phase when local search
is sensed to have proceeded to unproductivity. The first task of this phase is to try all

reset states for any new output partitioning. Then, if undetected faults still remain, a
reset combination is chosen as a starting point and an input combination chosen at random .
is applied while looking for a new state defined by the levels of the feedback and output

~".

12 W. R. SMITH

lines. Each new state that detects a fault is recorded, and the process is repeated until

all faults or all states have been exhausted.

When the states that detect the remaining faults have been ascertained, a search is

made to find the minimum transfer sequences between the reset states and closest states
detecting faults. These last sequences are added to the local search phase sequences,
thus making up the total test sequence.

SUMMARY

-jSystematic procedures for the diagnosis of combinatorial networks have been de-
vised. In the case of sequential networks, nothing found in the literature offers complete
testing with reasonable computer costs.

If tests exist for the determination of given failures in a combinational circuit, then

-A the critical path or sensitivity methods ill find them. Circuitry known to be combinato-
rial would be best tested by methods other than the general sequential approach.

Two approaches covering the testing of sequential networks are the state table and
the directed search methods. Prohibitive computer time and memory requirements bar
the use of state table methods as they now stand. The directed search method, while it
loses efficiency in the last stages of test generation, is (on the average) extremely
powerfuL

It appears from the latest efforts that approaches combining variations on the di-
rected search method and, perhaps state table methods, will bear the choicest fruit.

FUTURE WORK

To assemble a diagnostic system for digital networks, three things are required:

1. A programmable logic simulator,

2. A diagnostic test generating system, and

3. A test-sequence application and control unit.

1. A synthesis of software simulators suitable for sequential logic is no small task
by itself. It must, for diagnostic applications, be flexible enough to handle programmable
fault conditions and be able to recognize oscillations and races under control of the
diagnostic test generator. Considering the complexity of thAs portion of the system re-
quirements, it would be advantageous to utilize existing software, making whatever mod-
ifications are necessary.

2. The literature (15,16), indicates that directed search test generators appear to
promise the greatest flexibility, the most testing power, and the n.ost -,nomical use of
computer facilities.

A programming system written by Seshu and incorporating a logic simulator and
diagnostic test generator has been converted to CDC-3600 use by Chang and Goetz at Bell
Telephone Laboratories. Arrangements have been initiated for obtaining a copy of this
program to use as an experimental tool. It is an improved version of Seshu's original
local search routine with i ategies for making random and combinational test searches
at program discretion. T7 -o -rogram would provide a vehicle for experimenting gith
different approaches. Replacing Seshu's information gain criteria with Chang's

NRL REPORT " 13

distinguishability criteria for testing within moduies should realize a reduction in test
sequence sizes.

Applying the Jones and Mays integrated fault-detection method to a system with
fault distinguishability capabilities might result in an efficient diagnostic system with
more complete test-finding capabilities.

Also, a Fortran IV logic simulator is available from the University of Buffalo,
and arrangements have been made to obtain it.

3. Once a test sequence has been generated, it is necessary to have a device which
will apply the sequence to the network in question and properly interpret the results. It
is impractical to assign the job to the compu'sr on which the diagnostic sequences are
generated. Rather, it is anticipated that test equences written on magnetic tape would
be applied by a special unit consisting of either a digital tape deck with special logic or a
small general purpose computer. Suitable interface flexibility would have to be provided
for handling the voltage, impedance, and timing requirements of various circuitry.

REFERENCES

1. Kautz, W.H., "Fault Testing and Diagnosis in Combinational Digital Circuits," EEE
Trans. Computers C-17:352 (Apr. 1968)

2. Hornbuckle, A., and Spann, R., "Diagnosis of Single Gate Failures in Combinational
Circuits," IEEE Report R-68-158, June 1968

3. Sellers, F.F., Jr., Hsiao, M.Y., and Bearnson, L.W., "Analyzing Errors with the
Boolean Difference," IEEE Trans. Computers C-17 (No. 7):676 (July 1968)

4. Amar, V., and Condulmari, N., "Diagnosis of Large Combinational Networks," IEEE
Trans. Electronic Computers (Correspondence) EC-16:675 (Oct. 1967)

5. Roth, J.P., "Diagnosis of Automata Failures: A Calculus and a Method," IBM J. Res.
Dev. 10:278 (July 1966)

6. Galey, J.M., Norby, R.E., and Roth, J.P., "Techniques for the Diagnosis of Switching
Circuit Failures," IEEE Trans. Commun. Electron. 83 (No. 74):509-514 (Sept. 1964)

7. Preparata, F.P., "An Estimate of the Length of Diagnostic Tests," Third Annual
Princeton Conference on Information Sciences and Systems, Mar. 1969 (to be pub-
lished)

8. Moore, E.F., "Gedanken-Experiments on Sequential Machines," in "Automata
Studies," Princeton Annals of Mathematics Studies No. 34, Princeton:Princeton
University Press, 1956, pp. 129-153

9. Hennie, F.C., "Fault Detection Experiments for Sequential Circuits," Proc. Fifth
Annual Switching Theory and Logical Design Symposium, Princeton:Princeton Univ.,
1964

10. Poage, J.F., and McCluskey, E.J., "Deviations of Optional Test Sequences for Se-
quential Machines," Proc. Fifth Annual Symposium on Switching Theory and Logical
Design, Princeton:Princeton Univ., Nov. 1964, pp. 121-132

11. Seshu, S., and Freeman, D.N.,"'The Diagosis't A vn chronous Sequential SwitchiPg
*1 Systems," MRE Trans. Electronic Computers EC-11-0174915 (Aug. 1962)

ai. Seshu, S., "On an Improved Diagnosis Prograt.,' I1WTE Trani-. Electronic Computers
EC-14.:76-79 (Feb. 1985)

.3. Chang, H.Y., "A Distinguishability Criterion for Seledk ing E~.dcient Diagnostic Tests,"
'968 Spring Joint Computer Conferepo'e, Wa."h~gton, D.C.:AFIPS, Vol. 32, pp. 529-
634

14. Jones, E.R.. and ?j'.ys, C.1- ' -;.ntownil Tes t Geeration M-iods for Large Scale
Integrated Logic," MEE J7. Solid-State Circuits SC-I (No. 4):221-226 (Dec. 1967)

15. Manning, E.G., and Chang, H.Y., "A Comparison of Fault Simulation Methods for
Digital Systems," Digest of the riret Arnual WER Com'~tuter Conference, Chicago:

i16. Breuer,H A, "HardwareFault Detection,' 984 PA41Jo nW Computer Conference,

Security Classification

IDOIGINATN AL DIGOTIV C0 TECHIQUES SURVEY ANCRIT CECOMMENDATIONS

Wil.a AC.R Tmith

0.RK*T AE 4. TOTAL. NO. OF *AG9S T.NO. OF, maps

October 2, 1969 18 16
DO. CONTRACT OR GRANT kO, S..aIft.-rRwS REPORT JSR)

NRL Problem BOI-04
6. PROJECT NO NRL Report 6938
Project BRO03-02-41-6150 _____________________

l o b - O T H E R R P O R T N o t *) (A flp * 1h Sr n in b e r e Ift a m a ? 6 S " B i f ft I

d.

1O O)STRIOUTFOF. STATEMEN.T

This document has been approved for public release and sale; Its distribution is unlimited.

IF. SUPPLEMENTARY NOTES ill. SPONSORING MILITlARY ACTIVITY

Department of the Navy
I(Office of Naval Research),

_____________________________ Washington,_D.C. 20360
1,A \.TI)AC T

_ Finding efficiert testing procedures for digital machines has become of prime concern to
the industry due to high circuit densities brought about by evolution in semiconductor device
technology.

The number of inputs required for testing can be reduced from the set of all possible input
combinations to a smaller group derived from a dictionary of tests which defines unique rela-
tionships between failure mode and output response. Reduction of the toot dictionary by
prime-implicant minimization methods and by serial application of the reduced set can lead I
to manageable test programs. Those involve sequence lengths characterized by a lower limit,
bounded by the logarithm of the number of initial table entries. ',

Testing sequential machines io especially cumbersome du4e to~te dependency of circuit
response on previous input sequences. Lines of attack include che~king for consistency be-n
tween circuit response and design state table. A more manageable scheme involves grouping
machines of specific failures according to their responses to selected test inputs. A proper
choice of inputs for each test step and the adaptive application of the resulting sequences
provides relatively efficient fault-location programs.

Practical schemes for complete testing have yet to be found. Adaptive sequence genera-
tors with programmed options for state-table and combinational analysis appear to yield more
promising results.I

DD, "0R'm,1473 (PAGE 1) 15 _ _ _ _ _ _ _ _ _

S/N1 011.5107.6810I SecuritY C111iSS iUCiliton -

KR 6101LINK A LINK 6 LINK

Dgtl computer fault location program. - - - - - -

D ianost routinesl

Tout-generating algorithms for fault location

DD '?' ..1473 (BAa() 18 _____________

(P AGEL 2) Security Clasalflc tlon4 ______

' ' T "1" t TT I i "'i -

